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Many organisms and objects deform nonrigidly when moving,
requiring perceivers to separate shape changes from object mo-
tions. Surprisingly, the abilities of observers to correctly infer
nonrigid volumetric shapes from motion cues have not been
measured, and structure from motion models predominantly use
variants of rigidity assumptions. We show that observers are
equally sensitive at discriminating cross-sections of flexing and
rigid cylinders based on motion cues, when the cylinders are
rotated simultaneously around the vertical and depth axes. A
computational model based on motion perspective (i.e., assuming
perceived depth is inversely proportional to local velocity) pre-
dicted the psychometric curves better than shape from motion
factorization models using shape or trajectory basis functions.
Asymmetric percepts of symmetric cylinders, arising because of
asymmetric velocity profiles, provided additional evidence for the
dominant role of relative velocity in shape perception. Finally, we
show that inexperienced observers are generally incapable of
using motion cues to detect inflation/deflation of rigid and flexing
cylinders, but this handicap can be overcome with practice for
both nonrigid and rigid shapes. The empirical and computational
results of this study argue against the use of rigidity assumptions
in extracting 3D shape from motion and for the primacy of motion
deformations computed from motion shears.

optic-flow | structure-from-motion

All animals, such as fish, insects, birds, and reptiles, and many
mechanical objects, such as cranes, earthmovers, harvesters,

and bicycles, change shape as they move. Some shape changes
(e.g., bending and straightening of legs) create forward pro-
pulsion, others such as torso flexes and head bobs serve to
maintain balance, whereas others like head turns may be un-
related to object motion. Humans seem to be quite good at dis-
entangling shape changes from object motion and characterizing
motion as tumbling, rolling, swaying, stretching, leaping, spinning,
flapping, dancing, kicking, bucking, jerking, sliding, gliding, trip-
ping, or shaking. A large number of studies have examined human
perception of rigid 3D shapes from motion cues (1–5); however,
very few have examined nonrigid shape perception (6–8), and
these have not dealt with what shapes are perceived.
Structure from motion models fall into three broad theoretical

classes. In the incremental rigidity scheme (9, 10), the visual
system assumes that the object is rigid or approximately rigid to
extract the 3D shape. The perceptual system creates a 3D model
of the object that is continuously updated to minimize nonrigid
deformations across frames. This inverse optics approach seeks
to compute the exact Euclidian (up to a scale and rotation)
structure that would project to the 2D images. However, it is very
sensitive to measurement noise and thus, requires accurate
frame by frame feature tracking. In addition, often, the human
perceptual system does not extract a rigid Euclidian or Affine
structure that corresponds to the moving object (11, 12).
The most common retinal motions arise from the movements

of observers, and in this case, local retinal velocities are inversely
proportional to distances in a given scene (3, 13–15). Similarly,
retinal velocities arising from an object translating in front of
a stationary observer are inversely proportional to distances of
different parts of the object. Models that assume that this prin-
ciple is used by the visual system to extract depth from relative

velocities will be called motion perspective models. Psychophys-
ical (16–18) and physiological (19–22) evidence for relative ve-
locity detectors suggests that they could play an intermediate role
in computing 3D shape, and electrophysiological studies have
implicated the middle temporal (MT) cortical area, which con-
tains such neurons, as having a significant role in computing 3D
structure from motion (23–27). This approach has been shown to
be in general agreement with human perception of rigid objects
(3, 28, 29) but has not been tested on nonrigid motion.
Under general conditions (i.e., motions of observers and

objects that include rotations and shape changes of objects),
motion leads to deformations of the pattern of retinal image
velocities (optic flow). After translation parallel to the image
plane has been factored out, a particularly useful parsing of the
optic flow is in terms of the kinematic differential invariants curl,
div, and def (30). Of these, only the def component carries in-
formation about the structure of the scene and has formally been
linked to local slants and tilts (30–33). Building on this formal
work, experimental studies have shown that the perceived slant is
proportional to the def component of the optic flow (34), a def-
based heuristic model has been suggested for computing local
slants and tilts of planar stimuli (4, 35), and def has been used in
a template model for volumetric rigid stimuli rotating along ar-
bitrary axes (36). Physiological studies on nonhuman primates
and imaging studies on humans have found neurons in the medio-
superior temporal (MST) area (37–39), the temporal polysensory
area (STPa) (40, 41), and the superior temporal sulcus (STS) (42)
that preferentially respond to the curl and div components of
optic flow but not to the def component. Lagae et al. (43)
reported a few cells that preferentially respond to the def com-
ponent in area MSTd. In addition, def can be composed from
a pair of motion shears or compressions, and a number of studies
have found cells in area MT that can signal motion shear (19–22).
Nonrigid structures have been studied extensively in one do-

main: point light depictions of biological motion (44), where
humans can identify gender (45), emotion (46), and other
attributes from moving lights placed at the joints of articulation.
How this is done by the brain is an open question, but some
neural models postulate that it is by the use of snapshot neurons
that are tuned to different poses of a deforming humanoid shape
(47). However, it is unlikely that snapshot neurons exist for very
many objects in the large class of deforming shapes.
In machine vision, moving rigid shapes are most often extracted

using variants of factorization of the image stream matrix into
a 3D shape matrix and an orthonormal rotation matrix (48). For
nonrigid shapes, the shape matrix changes on every frame, but
because the shapes generally change continuously with smooth
movements, the factorization can be extended by either con-
straining form as a linear combination of a small set of basis shapes
derived from the images, or by constraining motion as a linear
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combination of a small set of basis trajectories (e.g., oscillations)
(49–52).
The current study measured observers’ ability to discern

nonrigid shapes from motion cues and examined different
models for explaining these capabilities. We began with asking
observers to discriminate deviations from perfect circularity for
rotating rigid and flexing cylinders (flexing cylinders were similar
to a garden hose shaken from a central hold). We found that
observers were as sensitive to deviations from circularity for
nonrigid shapes as for rigid shapes. A motion perspective model
was better than a trajectory basis model in predicting average
performance. In addition, we found that, when rotation of
symmetric stimuli created asymmetric retinal velocity fields,
observers reported asymmetric percepts. Finally, we examined
how performance degrades in the presence of multiple nonrigid
deformations (i.e., for cylinders that inflated and deflated while
flexing in the image plane or depth).

Results
Experiment 1: Discriminating Shapes Using Motion Cues. Observers
monocularly viewed perspective projections of rigid and flexing
point light cylinders rotated simultaneously about the vertical
axis in the image plane and the depth axis orthogonal to the
image plane (Fig. 1). The diameter of the cylinder in the image
plane was kept constant, but the cylinder’s depth was varied to
set the aspect ratio at 0.7071, 0.8409, 1, 1.1892, or 1.4142, se-
lected randomly on each trial. Stereo, texture, and density cues
were not informative. Observers were instructed to report
whether the cross-sections were shallower or deeper than perfect
circles; 20 blocks of 45 trials each were spread over two sessions.
Fig. 2A shows the average percent of trials perceived as deeper

than a perfect circular cross-section for the four types of cylin-
ders (two rigid and two flexing). Points of subjective circularity
(PSC) estimated from the smooth fits are shown in Fig. 2B.
Observers’ judgments of aspect ratio were significantly deeper
than veridical (PSC < 1.0 with P < 0.05) for the cylinder flexing
in the image plane and were slightly shallower than veridical for
the other three (PSCs from 1.05 to 1.2, significantly larger than
1.0 with P < 0.01). The slopes of the psychometric curves show
good sensitivity to the stimulus variations, ranging from 0.1 to 0.8
for a twofold increase in the stimulus signal strength. More im-
portantly, the slopes of the four psychometric functions did not
differ significantly [F(3,28) = 0.9435, P = 0.43), showing that
nonrigidity does not affect the sensitivity for discriminating
shapes extracted on the basis of motion cues. Because rigidity
assumptions are not useful in discerning the shapes of flexing
cylinders and the similarity between the slopes of the psycho-
metric curves make it unlikely that entirely separate neural
processes are used for flexing than for rigid cylinders, these
results suggest that percepts of rigidity may arise as a result of

a more general prior assumption. Although observers were able
to perform this task in a consistent manner (percent perceived
deeper varied monotonically with the aspect ratio, and mean
PSCs were within 20% of veridical), the sensitivity observed
here is substantially lower than that for discriminating elliptical
departures from circular shapes in 2D (53).
Computational analyses. To understand how observers were
accomplishing the experimental tasks, we analyzed our stimuli
using the global motion perspective approach (3, 13, 14) and the
trajectory basis approach (50).
Motion perspective model. Using the heuristic that the image ve-
locity of every point is inversely related to the distance of the
point from the optical center of the observer (28), we computed
a velocity contrast metric (VCM) for each narrow cross-sectional
slice as VCM = (Vmax-Vmin)/(Vmax+Vmin) (i.e., the normalized
difference between the maximum and minimum velocity along
the cross-sectional slice) (Fig. 3A). To compute the VCM for the
entire trial, the VCM was averaged across each cross-sectional
slice on a single frame and then across all the frames.
Trajectory basis model. We applied the algorithm of Akhter et al.
(50) to compute the structure of the deforming cylinder. Taking
advantage of the fact that the cylinders were deforming smoothly,
the 3D path taken by each dot on the cylinder was modeled as
a linear combination of simple trajectories formed by discrete
cosine transforms. The number of harmonics used as basis tra-
jectories was empirically determined to be three for the two flexing
cylinders. After the structure was determined (up to an arbitrary
scale and rotation), we aligned the cylinder along its length and
computed the aspect ratio on each frame. The aspect ratio for the
trial was computed by averaging the aspect ratio across all frames.
The schematic in Fig. 3B shows how a complex smooth trajectory
can be modeled as a linear combination of cosine oscillations.
It should be noted that the shape basis approach (51) recovers
similar nonrigid structures from our stimuli. We chose the tra-
jectory basis functions because of the greater potential for gen-
eralization: the same trajectory basis functions can be used for
a wide range of 3D shapes, but a novel shape basis needs to be
computed each time for a different shape.
The simple motion perspective model simulates psychometric

curves that are roughly parallel, and the order of the curves is
similar to the order in the psychophysical data (Fig. 2C): the
VCM is highest for the cylinder flexing in the image plane and
smallest for the faster-rotating rigid cylinder. Interestingly, the
faster-rotating rigid cylinder was perceived as shallower than the
slower-rotating rigid cylinder, indicating that perceived depth
magnitude depends more on velocity contrast than on absolute
speed. These simulations suggest that observers rely on relative
velocity information to infer 3D shapes, at least for these qual-
itative judgments. On the other hand, the aspect ratio computed
by the trajectory basis model is very similar for all the cylinders
and slightly higher than the veridical aspect ratio (Fig. 2D). Thus,
this model does not explain the perceptual biases observed in the
psychophysical data, particularly the bias to perceive cylinders
flexing in the image plane as deepest.

Experiment 2: Asymmetric Percepts from Symmetric Cylinders. The
cylinders presented in experiment 1 were perfectly symmetric
around the central transversal plane orthogonal to the image
plane; however, while making observations in the experiment,
the authors noted that some cylinders appeared asymmetric.
Experiment 2 was designed to measure this systematically. The
stimuli were exactly the same as in experiment 1, except that the
aspect ratio was fixed at one of these three values (0.7071, 1, or
1.4142) selected pseudo-randomly on each trial. On one-half of
the trials, selected pseudo-randomly, the cylinder rotated about
both the depth and vertical axes (compound rotation condition
as in experiment 1), and on the other one-half, the cylinder ro-
tated only about the vertical axis (simple rotation condition).

A CB

X

Y

X

Z

Fig. 1. Sample frames for simultaneous rotation about the vertical and
depth axes for (A) a rigid cylinder, (B) a cylinder flexing in the image plane,
and (C) a cylinder flexing in depth. The regular grids of dots in the figure are
only for illustration purposes; in the experiments, dots were randomly
placed after surface generation to remove density and texture cues to shape,
and cylinders were presented behind a frame so that the curved edges were
not visible to the observer.
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The observers’ task was to report whether the cylinder had
a symmetric or asymmetric profile by pressing one of two keys.
Observers ran 12 blocks of 54 trials each. The entire session
lasted about 1 h.
Fig. 4A shows the percentage of trials perceived as asymmetric

as a function of aspect ratio for the rigid and flexing cylinders for
the two types of motion. Cylinders were perceived as asymmetric
more often when undergoing compound rotation than when
undergoing simple rotation [F(1,5) = 22.574, P < 0.01], and
shallow cylinders were perceived as asymmetric more often than
deep cylinders [F(2,10) = 4.915, P < 0.05]. Furthermore, there
was also a main effect of nonrigidity [F(2,10) = 7.610, P < 0.01],
particularly cylinders flexing in the image plane were perceived
as asymmetric more often than the other two cylinders.
To understand the perceived asymmetry, we looked at the

velocity profiles generated by the stimuli. Fig. 5 A and B shows
the velocity profiles for rigid cylinders under simple and com-
pound rotation, respectively. As the figure shows, the velocity
profiles are symmetric about the horizontal midline for simple
rotation but distinctly asymmetric for compound rotation. The
combined rotation about the vertical and depth axes is equiva-
lent to a rotation about an oblique axis that passes below the
midline of the front surface of the cylinder, and the location of
the minimum velocity is the projection of this intersection. When
we reversed the relative phase of the two simultaneous rotations,
the intersection of the rotation axis and the minimum velocity
shifted above the horizontal midline, and this was reflected in the
perceived asymmetry.
To judge whether the two models could simulate the perceived

asymmetry, we calculated an asymmetry metric (AM) as the
mean-squared error between the veridical symmetric shape and
the shapes computed by the trajectory basis and motion per-
spective models. The shapes were normalized to have the same
range and magnitude before computing the error. Fig. 4 B and C
shows the computed AM for the two models. Neither of these

models explains the psychophysical data perfectly. The motion
perspective model shows that asymmetry decreases with increasing
aspect ratio, as observed in the data, and also shows higher
asymmetry for compound rotation than for simple rotation, as
found in the experimental data; however, the asymmetry for cyl-
inders flexing in depth was highest, unlike the experimental data.
The trajectory basis model does predict that cylinders flexing in
the image plane appear most asymmetric; however, the bias is
grossly exaggerated, because the cylinders flexing in depth and the
rigid cylinders have very little asymmetry for high-aspect ratios,
even for compound rotation. The results of this experiment pro-
vide further evidence that observers rely on relative velocity
measurements to compute 3D shape to estimate both qualitative
properties as in experiment 1 and global shape properties like
symmetry. This provides an interesting counterpart to results
showing that global properties like symmetry can help to resolve
ambiguities in nonrigid motion (54).

Experiment 3: Detection of Multiple Nonrigidities. In the natural
world, objects often undergomultiple deformations simultaneously
(e.g., a stalking animal inhales and exhales). To see if observers can
detect multiple simultaneous nonrigidities, we examined whether
observers could detect inflation and deflation of rigid and flexing
cylinders by smoothly varying the aspect ratio of the cylinder during
the trial (the cross-section in the image plane was kept constant).
Any given trial began with a cylinder with aspect ratio of 1.0 (per-
fectly circular cross-section), and then, it inflated by a fixed amount
in the first one-half of the trial and deflated by the same amount to
a perfectly circular cylinder or deflated by a fixed amount followed
by an inflation by the same amount. The order of inflation and
deflation was randomized across trials. The observers’ task was to
report whether the trial consisted of an inflation followed by a de-
flation or vice versa. This experiment was conducted in two parts. In
the first part, we used a constant stimulus paradigm using relatively
high signal values to assess the performance of observers on the
task; only those observers who could perform the task in a consis-
tent manner participated in the second part. In the second part, we
used a Bayesian adaptive threshold estimation procedure [QUEST
(55)] to determine 82% correct thresholds for the rigid and flexing
cylinders. The degree of inflation/deflation was controlled as the
percentage change from unit aspect ratio.
Fig. 6A shows the percentage accuracy averaged across in-

flation and deflation for nine naïve observers as a function of
signal strength. Only two of nine observers could perform the
task consistently, implying that the task is inherently difficult and
may require extensive training. The difficulty may be related to
problems in detecting instantaneous stretching of objects along
the line of sight from motion cues alone (56). We selected these
two observers plus an author (A.J.) and another observer, who
was extensively trained on the task but was uninformed about the
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Fig. 2. Psychophysical and simulation results from experiment 1. (A) Fraction of trials perceived as deeper than a circle and plotted as a function of aspect
ratio for the four conditions, slow rigid (SR), depth flex (NRD), plane flex (NRP), and fast rigid (FR), averaged across eight observers. (B) Observers’ points of
subjective circularity for the four conditions in experiment 1 with the group mean. (C) The velocity contrast metric (VCM) computed as a function of the aspect
ratios for the four types of stimuli. VCM gives a qualitative measure of the computed depth. (D) The aspect ratios of the shapes extracted by the trajectory
space-based model for the four types of stimuli.

= M0 * + M1 * + Mk *+ ...

B

VCM =
Vmax Vmin
Vmax + Vmin

A

Fig. 3. The two modeling approaches. (A) Computation of the velocity
contrast metric (VCM) for a cross-sectional slice on the cylinder. (B) A com-
plex but smooth feature trajectory modeled as a linear combination of si-
nusoidal trajectories.

Jain and Zaidi PNAS | January 25, 2011 | vol. 108 | no. 4 | 1665

N
EU

RO
SC

IE
N
CE



purposes of the experiment, and we measured accuracy thresh-
olds for inflation and deflation independently. Fig. 6B shows the
82% accuracy thresholds averaged across the four observers.
Overall, thresholds for deflation were higher than thresholds for
inflation [F(1,18) = 5.33, P < 0.05]. More importantly, there was
no systematic difference in thresholds between rigid and flexing
cylinders [F(2,18) = 0, P = 0.99], and there was no significant
interaction [F(2,18) = 0.18, P = 0.83].
Fig. 7 shows the performance of the two computational

models for the rigid cylinder undergoing inflation and deflation.
The motion perspective model follows the variation in aspect
ratio quite well (Fig. 7 A and B), but the trajectory basis model
does not (Fig. 7 C and D). We observed no improvement in the
performance of the trajectory basis model by using a larger
number of basis trajectories. These results show that detecting
changes in relative velocities over time would be a successful
strategy for this task. Performance in the task may be limited by
the inability to detect accelerations (57, 58). However, after
training, four observers could perform the task reliably, which
suggests that observers can learn to associate changes in relative
velocities with changes in shape.

Discussion
Motions in the retinal image are predominantly caused by
movements of the observer’s body and head, and in this case,
most objects have to be inferred to be rigid and stationary, de-
spite distortions in the retinal images. There is some evidence for
a rigidity prior that biases scene percepts during self-motion (59),
and it is possible that this prior is generalized to object-generated
retinal motions. The most significant findings of the experiments
in this study are that humans are equally sensitive at discrimi-
nating nonrigid and rigid shapes from motion cues, show similar
biases in perceiving departures from nonrigid and rigid symme-
tries, and are equally sensitive to expansion and contraction of
nonrigid and rigid shapes. These results suggest that the human

perceptual system uses similar mechanisms for extracting rigid
and nonrigid shapes from motion cues, and it is unlikely that
a rigidity assumption per se is paramount in this process. As
general alternatives to the rigidity assumption, a number of re-
gularization principles have been proposed, such as minimal
mapping (9, 60), smoothest motion (60), or motion coherence
(61), but a model that generates general nonrigid percepts on the
basis of minimization principles remains to be constructed (62).
The computational simulations in this study found that the

motion perspective model predicted human performance better
than the trajectory space model, suggesting that the human
perceptual system uses relative motions to compute 3D struc-
ture. In addition, simulated symmetric cylinders were perceived
as asymmetric whenever the velocity profile was asymmetric,
providing further evidence that the relative velocity profile de-
termined the perceived 3D shape. The motion perspective model
is essentially based on the computation of motion shears at dif-
ferent spatial scales. We have presented it as a simple explana-
tion of our empirical results while recognizing that it will need to
be elaborated on for general situations. In a simple case like our
rotating rigid cylinders, local motions are predominantly parallel
as are the shears. In general, variations in speed, as a function of
depth and distance from the rotation axis, lead to 2D deforma-
tions in the perspective image (32) that can be captured by 2D
combinations of local shears corresponding to the def component
of the optic flow (63, 64). For a translating observer and a rigid
stationary object, functions of the def can be used to compute the
angle of inclination (tilt) and the magnitude of inclination (slant)
up to a bas-relief ambiguity (31, 65). In preliminary simulations,
we find that, when approximating the smooth cross-sections by
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locally planar polygons, the relative magnitudes of def were
consistent with the local slants of the rigid cylinder stimuli, and
therefore, this could be a more general alternative to the motion
perspective model.
This study has concentrated on possibly the simplest attribute

of our stimuli, the cross-section. It is gratifying that percepts of
this attribute have general theoretical implications, but it is likely
that more complicated aspects, such as the nature of the per-
ceived nonrigidity, will supply much richer theoretical concepts
on how nonrigid shapes are constructed in the brain. Hence, we
are collecting additional evidence about perceived shapes and
rotations. It is possible that the differential invariants will be
useful in modeling human performance. For example, motion
perspective alone predicts that a rigid cylinder in compound or
simple rotation should be seen as flexing in the center, and
therefore, 1D divergences that are a signature for object rotation
may have been used in the inference of a rigid rotation. In ad-
dition, spatial gradients of differential invariants can be formally
linked to the Gaussian and mean curvatures of the objects (30),
thus going considerably beyond estimating local slant and tilt
(e.g., flexing of the cylinder could be signaled by a change in sign
of the Gaussian curvature). It is also possible that it will be useful
to compute analogs of the differential invariants on extended
scales instead of using local directional derivatives (65) (i.e., the
outputs of deformation and divergence filters); for example, ex-
tended deformation templates can be formulated to signal the
difference between rigid and deforming shapes of the class studied
by Koenderink and van Doorn (66). There is a small amount of
evidence that observers can learn to associate particular motion
patterns with rigidity. Some of the evidence is informal (e.g.,
reports of initially seeing rigid objects as nonrigid), and some is

explicit that preexposure to wire-frame shapes promotes rigid
percepts (67). We intend to explore whether learning of defor-
mation patterns underlies the perception of different classes
of nonrigidity.

Methods
Observers. Eight observers participated in experiment 1, and six observers in
experiment 2; 11 observers participated in experiment 3. Both authors par-
ticipated in experiments 1 and 2; A.J. also participated in experiment 3.
Observers other than the authors were informed about the purpose of the
experiment only after it was completed. All subjects had normal or corrected
to normal vision. The experiments were conducted in compliance with the
standards set by the Internal Review Board at the State University of New
York-College of Optometry. Subjects gave their informed consent before
their inclusion in the study and were paid for their participation.

Apparatus. Stimuli were generated using the CRS Toolbox for MATLAB (The
Mathworks) and were displayed on a Sony CRT monitor using Cambridge
Research Systems’ ViSaGe system (Cambridge Research Systems) controlled
by a Dell GX620. The monitor’s resolution was set to 1,024 × 768 pixels, and
the refresh rate was set to 120 Hz. The experiments were conducted in
a dark room. The observers viewed the stimuli monocularly from a distance
of 100 cm using a chin rest to stabilize head position.

Stimuli and Tasks. Stimuli consisted of white dots on a black background
randomly placed on an opaque black horizontal cylinder after rendering the
3D surface (Fig. 1), thus removing texture and density cues to 3D shape. The
cylinders were presented in proper perspective for the position of the
observer’s eye. The 16.92°-long and 2.12°-wide cylinder was rotated simul-
taneously at π radians per second about the vertical and at 2π/3 radians per
second about the depth axis (the cylinder did not spin on its axis, and 3D
shape was not perceived with rotation only in the image plane). The starting
orientation was set at -π/6 roll and -π/4 yaw for all trials, applied in that
order. The cylinder rotated until it reached an orientation with +π/6 roll and
+π/4 yaw and then rotated back to the initial position. The stimuli lasted for
1.0 s. The rotating cylinder was only visible through a window 6.36° wide so
that observers could not see the ends of the cylinder. The central 0.8° section
of the cylinder was occluded to prevent observers from using just the ap-
proximately rigid central section. The cylinder was either rigid or flexed
smoothly in the depth or the image plane using Eqs. 1 and 2, respectively
(Movies S1, S2, and S3):

zðkÞ ¼ z0 − ðx0=20Þ2 �sinð4πk=NÞ [1]

and

yðkÞ ¼ y0 − ðx0=30Þ2 �sinð4πk=NÞ [2]

where k = current frame, N = total frames, and x0, y0, z0 = initial position.
Rotation was applied after computing the flexing. The depth-flex am-

plitude was approximately 1.2° visual angle (dva), and the image plane flex
was 0.53 dva at the extremes for cylinder flexing in the image plane. In pilot
measurements, these two flexes were judged to have perceptually similar
magnitudes. We also included a condition where the rigid cylinder rotated
at a higher speed (1.5×) so that the mean speed of the dots approximately
matched the mean speed for the nonrigid cylinders.
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